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ABSTRACT

Connection between wave equation traveltime inversion
and full waveform inversion is introduced. Numerical
example of a square anomaly imbedded in a homoge-
neous medium is presented.

INTRODUCTION

Traditional traveltime tomography techniques assume in-
finite frequency bandwidth, and require traveltime picking
for every trace. An eikonal solver is used in those meth-
ods, and its high-frequency approximation suffers from
complex velocity structure. Meanwhile, full waveform in-
version uses a wave equation solver, which handles veloc-
ity complexity naturally, but it is likely to stuck in local
minima. Wave equation travel time inversion method uses
a wave equation solver to get the Frechét derivative, and
uses that to update the velocity model.

THEORY

First let’s take a look at the theory behind full waveform
inversion. In full waveform inversion, the misfit function
is the squared l2 norm of predicted (calculated) data and
observed data:

ε =
1

2

∑
xs,xg

∫
[pcal(xg, t;xs)− pobs(xg, t;xs)]2dt. (1)

We can change our slowness model s to minimize the mis-
fit function in Equation 1. It is a non-linear optimization
problem. Input s has nz × nx unknowns, where nz and
nx are the number of points in vertical direction and hor-
izontal direction respectively. Output pcal(xg, t;xs) has
nt × ng × ns variables. nt is the number of time sam-
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ples. ng and ns are the number of geophones and shots
respectively.

We can use any gradient based optimization method to
solve this problem, for example, steepest descent method
and conjugate gradient method. The key to this problem
is to find the Frechét derivative, which describes how the
misfit function ε changes when there is a perturbation in
model s.

We denote the Frechét derivative as:

δε

δs
. (2)

Note that only pcal(xg, t;xs) changes when we change
the model s. The Frechét derivative mentioned above be-
comes:

δε

δs
=

∑
xs,xg

∫
δpcal(xg, t;xs)

δs
×

×[pcal(xg, t;xs)− pobs(xg, t;xs)]dt. (3)

After briefly introducing the theory of full waveform
inversion, we now turn to the wave equation traveltime
inversion. We generally follow the procedure introduced
in Luo and Schuster (1991). It is also an optimization
problem, the objective function related is as below:

ε =
1

2

∑
xs,xg

τmax(xs, xg)
2
. (4)

Where τmax(xs, xg) is the time shift that maximizes the
cross-correlation between calculated data pcal(xs, t;xg) and
observed data pobs(xg, t;xs). The cross-correlation is de-
fined as:

f(τ, s) =

∫
pobs(xg, t+ τ ;xs)pcal(xg, t;xs)dt. (5)

Where s is the slowness model.
Since at the maximum point τmax(xs, xg), the deriva-

tive of f(τ, s) with respect to τ is always zero, it can be
the bridge of τmax(xs, xg) and slowness model s. This
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derivative has the following expression:

df(τ, s)

dτ
= ḟ(τ, s)

=

∫
dpobs(xg, t+ τ ;xs)

dτ
pcal(xg, t;xs)dt

=

∫
ṗobs(xg, t+ τ ;xs)pcal(xg, t;xs)dt. (6)

Here comes the crucial step. We want to find how
τmax(xs, xg) changes when the slowness model s changes.
Note that, at the maximum point, if we change the slow-
ness model, ḟ(τ, s) is going to change. If we change τ ,
it is also going to change. If we want ḟ(τ, s) to remain
zero, changes induced by these two variables need to can-
cel the effect of each other. Inspired by this idea, we get
the implicit differentiation formula below:

∂τmax
∂s

= −
∂ḟ(τ,s)
∂s |τ=τmax

∂ḟ(τ,s)
∂τ |τ=τmax

. (7)

The equation above applies to all shot-geophone pairs.
Using the expression from Equation 6, we get the enumer-
ator

∂ḟ(τ, s)

∂s
|τ=τmax

=

∫
∂pcal(xg, t;xs)

∂s
ṗobs(xg, t+ τ ;xs)dt.

(8)
Similarly, we get the denominator, and we define its

value as E

E =
∂ḟ(τ, s)

∂τ
|τ=τmax

=

∫
p̈obs(xg, t+τ ;xs)pcal(xg, t;xs)dt.

(9)
Keep in mind that in both expression, the value of τ is

taken at the maximum point. Let’s now rewrite Equation
7 as below:

∂τmax
∂s

=

∫
∂pcal(xg, t;xs)

∂s

ṗobs(xg, t+ τ ;xs)

−E
dt. (10)

The last step is to find the Frechét derivative of objec-
tive function in Equation 4:

∂ε

∂s
=

∑
xs,xg

∂τmax
∂s

τmax

=

∫
∂pcal(xg, t;xs)

∂s
×

×τmaxṗobs(xg, t+ τ ;xs)

−E
dt. (11)

If we compare Equation 11 with Equation 3, we can see
the difference between full waveform inversion and wave
equation traveltime inversion. In full waveform inver-
sion, back-propagated signals are data residual, which are
pcal(xg, t;xs)−pobs(xg, t;xs). In wave equation traveltime
inversion, back-propagated signals are observed traces af-
ter several process. The observed traces are first shifted by
τmax to best match predicted data, and time-derivatives
are taken. Then they are weighted by corresponding trav-
eltime errors τmax and the minus reciprocal of second or-
der time derivatives of cross-correlation function at τmax

SYNTHETIC TEST

In the previous section, we discuss the theory of wave
equation traveltime inversion, and compare it to full wave-
form inversion. For conciseness, realization of full wave-
form inversion Tarantola (1984) is not discussed here.

The model velocity is shown below, there is an anomaly
in the center:

Figure 1: True velocity model

Figure 2: Initial velocity model

The model size is 150×400. There are 220 shots and 220
geophones. All shots/geophones are located around the
model to gain maximum angle coverage. In the final result
(Figure 3) We can see obvious artifacts near boundaries of
the model. This is caused by strong amplitude in gradient
near the shot location.

DISCUSSION

Wave equation traveltime inversion is essentially travel-
time tomography. They are different in two aspects. First,
traveltime tomography uses the first ground movement as
a sign to determine the travel time, which is dominated
by the high frequency part of the wave field, as pointed
out by Maarten and van Der Hilst (2005). In wave equa-
tion traveltime inversion, a cross-correlation is used to de-
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Figure 3: Final velocity model

Figure 4: Convergence Curve

termine the traveltime difference, which is influenced by
low-frequency waves. Second, the Frechét derivative in
wave equation traveltime inversion is a fat ray, which was
calculated by reverse-time-migration. Traditional travel-
time tomograph uses a ray-tracing method to find the ray,
assuming infinite frequency content.

In reality, the best ‘match’ of predicted data and ob-
served data doesn’t necessarily give the maximum cross-
correlation. It is better to mute all but first arrivals, and
then use the cross-correlation to find traveltime differ-
ences.

We never get such good coverage in field data, and that
actually leaves strong foot print of acquisition.
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